Efficient Gridless Wideband Direction-of-Arrival Estimation
From Many Frequencies

Yiming Zhou*

Huayu Fuf

Wei Dai*

*Department of Electrical and Electronic Engineering, Imperial College London, UK
tXingjian College, Tsinghua University, China

Abstract—This paper addresses gridless direction-of-arrival (DOA)
estimation for unknown source signals across a wide frequency range.
While processing signals jointly across multiple frequencies can im-
prove DOA estimation accuracy, it significantly increases computational
complexity as the model size expands, rendering traditional methods
impractical for handling many frequencies. To improve computational
efficiency, we apply the Hankel matrix lifting technique, casting the
DOA estimation as a nonconvex low-rank Hankel matrix recovery
problem. A crucial aspect of our method is that the optimization matrix
variable possesses both low-rank and Hankel structures, which allows for
efficient computations of matrix-vector products, truncated singular value
decomposition (SVD), and gradient and Newton direction evaluations.
By leveraging a modern second-order nonconvex optimization technique,
our approach achieves a low computational cost per iteration and a fast
overall convergence rate. We quantify the per-iteration complexity of
our method, and demonstrate its superiority compared with benchmark
approaches. Numerical simulations confirm that our approach not only
reduces computational complexity but also improves empirical DOA
estimation accuracy.

Index Terms—Gridless large-scale DOA estimation, low-rank Hankel
matrix completion, nonconvex optimization.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation is a fundamental problem
in array signal processing [1], with broad applications in radar [2],
patient tracking [3], wireless communications [4], and much more.
The task is to retrieve angles by estimating the (spatial) frequencies of
several complex sinusoids from their superposition. Traditional DOA
estimation methods for narrow-band signals, e.g., multiple signal
classification (MUSIC) [5], and estimation of signal parameters via
rotational invariant techniques (ESPRIT) [6], were among the first to
be developed. However, these methods cannot be applied directly to
wideband signals since the steering vectors are frequency dependent.
To address this issue, a series of covariance matrix based methods are
proposed, by leveraging nonlinear maps among covariance matrices
across frequencies. This includes but not limited to signal subspace
method (ISSM) [7], coherent signal subspace method (CSSM) [&],
test of orthogonality of projected subspaces method (TOPS) [9], etc.

In recent years, significant efforts have been put on constructing a
discrete grid of angles and applying sparse recovery techniques [10]—
[12]. This approach reduces the need for extensive sampling across
snapshots for covariance matrix estimation. However, its performance
is heavily dependent on the granularity of the grid: ultra-fine grids
can lead to high computational complexity and severe ill-posedness
of the inverse problem, while coarse grids are plagued by unavoidable
grid-mismatch issues.

More recently, methods targeting gridless wideband DOA es-
timation have emerged to address the grid mismatch issue. One
approach involves convex relaxation of the problem by minimizing
either the atomic norm or the nuclear norm. For instance, [13], [14]
formulates the problem as atomic norm minimization (ANM) and
derives the corresponding semidefinite programming (SDP) problem
using Vandermonde decomposition [15]. Similarly, [16] converts the

data into Hankel matrices and frames the DOA estimation as nuclear
norm minimization. Although this method, known as EMaC, was
not initially designed for wideband scenarios, it can be adapted for
such applications. Both ANM and EMaC require full eigenvalue
decomposition (EVD) or singular value decomposition (SVD) to
solve the resulting convex problems. Specifically, the complexity
of EVD for the non-structured matrix in ANM is O((MF + F)?)
[17], while the complexity of SVD for EMaC, when adapted in our
formulation (8), is O(K?MF?). Here, K, M, and F represent the
number of sources, sensors, and frequencies, respectively.

In this paper, we develop a computationally efficient and empiri-
cally effective method for wideband DOA estimation across multiple
frequencies, building on our recent work [18]-[20]. We formulate the
DOA estimation as a nonconvex low-rank Hankel matrix recovery
problem. A key feature of this approach is that the optimization ma-
trix variable exhibits both low-rank and Hankel structures, enabling
efficient computation. To solve this nonconvex optimization prob-
lem, we adapt a recent Newton-type proximal algorithm, known as
the Proximal Dogleg Opportunistic Majorization (PDOM) algorithm
[21]. Tailored to the problem at hand, we construct a block-wise
Hankel matrix with a carefully designed block size, which reduces
the computational costs of all key steps—including matrix-vector
products, truncated SVD of the structured matrix variable, and the
gradient and Newton directions in the PDOM algorithm—by several
orders of magnitude. Our analysis shows that the computational com-
plexity per iteration is significantly reduced to O(K M F?log M F)
compared to the aforementioned benchmarks. Numerical experiments
demonstrate the fast convergence rate and substantial improvement
in computational efficiency of the overall optimization procedure.
Empirical results also indicate that our method achieves superior
DOA estimation accuracy across a wide range of SNR levels, even
with only a single snapshot of the data.

II. PROBLEM FORMULATION

A. Signal Model

We consider a uniform linear array (ULA) with array spac-
ing d of M sensors receiving wideband signals from K active
sources located in the far field of the array. The knowledge on
the model order is assumed to be known. Wideband signals from
each source arrive from angles @ = [y ---0x] ", given in radians.
Each signal has F' temporal uniform frequency sub-bands, i.e., f €
{fo,fo+ Af,..., fo+ (F —1)Af}, where fo and Af denotes the
base frequency and frequency space, respectively. For notation sim-
plicity, we denotes wy = w(fk) := M € {—2nd/c,2nd/c}.
Based on above denotations, combing F' frequency bins, the received
signal can be formed as a matrix Y := [y1---yr] € CM*XF with
the following expression

Y=X+N, M



where

K
X = Z CkA(wk) ® S;IC—
k=1

= clsk(Da(fo,wn) .. sk(Fa(fo+ (F — DAS,wi)],

where ¢, denotes the contribution of each source, A(wg) :=
[a(fo,wr) - a(fo+ (F — D)Af,ws)] € CM*F ® is block Kro-
necker product, s records the signal amplitude for each frequency
sub-band, a(f,w) := [1...e 9/M=D] ¢ CM s the steering
vector corresponding to frequency f and DOA w, and N € CM*F g
Gaussian uncorrelated noise. The target is to obtain DOA information

w from the observation Y.

B. Optimization Problem

Inspired by line spectrum estimation via low-rank Hankel matrix
recovery [22], [23], it can be shown that, for any signal & € cM
formed by a superposition of up to K narrow-band sources, its Hankel
form admits a Vandermonde decomposition

Hae = An(w)diag(s) AN (w), 2)
where H denotes a linear operator which maps « to a Hankel matrix
Ha € CM1>*M2 with My + My = M +1 as each element [Hzx]; ; =
iy, Vi € {0,...,M1—1},5 € {0,..., M2 — 1} where index
starts with zero, Ay (w) = [a(fo,w1) - a(fo,wr)] € CMLXE
is a Vandermonde matrix, s = [s1---sx| ' . Since each element in
a steering vector is unique and K < min(M1, M2), An(w) is a
full-rank matrix and rank(Ha) < K. Therefore, given the observed
signal y, the problem can be formulated as

min% |y — x| 4+ d(rank(Hz) < K), 3)

where §(-) denotes the indicator function, which equals infinity if the
condition is violated and zero otherwise.

The formulation (3) can be extended to the multi-channel line
spectrum estimation [24]. For multiple measurement vectors (MMVs)
case, given L snapshots, X € CM*L a block Hankel matrix
is constructed by stacking the Hankel matrices formed from each
snapshot horizontally, as follows

HX = [Hxy... Her]. 4)

Since each snapshot (channel) is modulated homogeneously, i.e., by

the same sinusoid, the low-rank structure of the block Hankel matrix

still holds. As a result, by using the same decomposition as (2), we
have 1

m)}ni Y — X |3 + d(rank(HX) < K). 5)

However, for wideband signals, the low-rank constraint is violated
due to varying temporal frequencies across different frequency bins,
posing challenges in combining information from different channels.
To ensure the low-rank Hankel model remains consistent with the
wideband signal, we develop the extended manifold array vector to
uniformly represent the heterogeneously modulating signals. That is

Gent(fu,w) i=[1...e 7@ -"D)c N (6)

Acor(wr) = [a(fu,wk) ... a(fu,wr)] € TV ()

where f, = GCD (fo, fo+ Af,..., fo+ (F—1)Af) computes

the greatest common divisor of all frequencies in the set of frequency

bins, and N = (f0+(F_1;/Af)(M_1) + 1 € Z%. Therefore, the

wideband DOA estimation 'via low-rank Hankel matrix completion
can be formulated as

. _1 _ 2, @ _ 2
min F(M, X) =5 [IY ~UX|[z + 5 |M - #X][7

+ d(rank(M) < K), (8)

where o > 0, and M € CM1*M2F js introduced for computational
traceability. With low-rank assumption on M, each block Hankel
matrix is constructed as a tall matrix to allow efficient computations
illustrated in Section III. Specifically, we set M2 = 3K and M; =
N —3K +1 (on the order of MF). U : N X F — M x F'is a linear
operator that maps the signal represented by the extended manifold
array vector to the original domain. Specifically,
Y:L{X—>Y(i,j):X(l—f—%(i—l)j,j). ©)
III. EFFICIENT SOLVER

The formulation in (8) is a nonconvex problem due to the rank
constraint. A typical way to handle it is to consider the convex relax-
ation of low-rank constraint, i.e., the nuclear norm regularization [16].
However, optimizing the nuclear norm requires soft-thresholding on
full scale SVD of M. The computational complexity for each iteration
is on O(M1 M3 F?) = O(K?M F?), growing cubically with respect
to the number of frequency bins, which becomes prohibitive for large-
scale cases. Incidentally, the SDP of ANM requires O((MF + F)?)
per iteration, which also shares the same limitation.

To extend DOA estimation to many frequencies, we directly solve
the nonconvex formulation (8) by adopting the proximal dogleg
opportunistic majorization (PDOM) to enhance convergence speed in
number of iterations [21]. The computational complexity per iteration
is optimized by only solving K-truncated SVD and fully exploring
the Hankel and low-rank structures in the update variable. In the re-
mainder of this section, we first provide detailed implementation steps
for applying PDOM to solve (8), followed by specific acceleration
techniques for each computational operation.

To apply the PDOM, we first reformulate the multi-variable
problem in (8) into a single-variable problem by expressing X as
a function of H. That is,

VxF=U UX)-Y)+aH (H(X)—- M) =0, (10)
X* = UU+aHH) " UY +aH M) . (11)

Here, U* and ‘H* denote adjoint operators of U and H, respec-
tively. The operator U/*U represents a diagonal matrix whose kth
diagonal elements is one if & = 1 + %(z —1)j+ NG —1) and
zero otherwise. Similarly, H*# is also a ﬁiagonal matrix with form of
diag(h), where h = [1,..., My —1, My, --- , My, My —1,...,1]".

N————
Mao—M;+1
For simplicity, we define W := (U*U 4+ oH*H) ™", where W is
the inverse of a diagonal matrix which can be computed with O(N)
complexity. Substitute (11) to (8), we have

1
min <[ Y —UW WY +aH M) + % M — HW U'Y + o’ M)

q(M)
+ d(rank(M) = K),
h(M)

(12)
where q(M) and h(M) denote the smooth and nonsmooth terms.
Then we construct the gradient, Newton directions, and surrogate
function for the PDOM algorithm. The gradient can be computed by
the trick in [25], we have

g=VuMF+Vx+FVpy X"

Y YMF+0
=a(M - aHWH M — HWU'Y), (13)
where (a) is due to the optimality condition (10). The Hessian matrix

takes the form of

Q=ol — *HWH", (14)



where I is an identity matrix. To compute the inverse of the Hessian
matrix, we use Woodbury matrix identity (I+UV)™' = I-U (I +
VU)’IV [26], one has

_ 1 oy —
Q I:E(I—a’HWH )
1 (I —H( — aWHH) aW?—[*)
et
=~ (1-auDWH'), (15)
~ et
where D = (I — aWH*H) ™" is also the inverse of a diagonal ma-

trix. Consequently, computing the Newton direction gy = —Q " 'g
avoids the need for dense matrix inversion. PDOM belongs to
the majorization-minimization algorithms and the special surrogate
function of (M) optimized for each iteration is defined as

ms(M; M"*) := g(M"*) + Tr (9/I (M - Mk))

1 N
+— ‘M—M H .36
'TB F

where k denotes the iteration index, and Tr(-) computes the trace of
a matrix. Here, for 8 € (0, 1], we define

gy X87P0) o) __le@)I?
Ip(8)]2 ’ Tr(g"p(B))’
where p(8) := (8 — 1)7g + Bgn denotes the descent direction of
PDOM and 7 € (0,1/Lg), where L, is the Lipschitz constant of the
gradient of the smooth part g. Finally, given /3, the overall surrogate
function mg(M; M") + h(M) for each iteration can be solved by
one proximal operator,
MM = prox, (MY +p(8")) = TSVD (M* + p(8"))
’ (17)
where TSVD(+) computes the K-truncated SVD of the given matrix.
After completing the low-rank Hankel matrix by PDOM, the DOAs
are extracted using a subspace-based method. Unlike the traditional
MUSIC algorithm [27], which requires one step full-scale SVD to
identify the noise-space correlation function, we utilize the results
of truncated SVD from the final iteration and apply Gram-Schmidt
Orthogonalization [28] on the left singular matrix U € CMixK
to compute the noise subspace Us € CM1*X Subsequently, we
identify the DOAs by locating the K largest local maxima of the
image function. The image function is defined as

[0"" (&)

B

J(@) = = o (13)
U5 ¢ (@)l
where
1 1 ... 1
6727T7lw1 6727riw2 6727r7lw5
—2miwy ) 2 —2miwy ) 2 —2Tmiwg 2
P = | (e (e ()
(6—27”'.«)1)]”1 (6—2771’.402) My (6—2772’.0.15)1\/[1
and @ = [wi,ws,...,ws]’ € C° denotes the sample frequency.

The overall procedure for efficient wideband DOA estimation is
summarized in Algorithm 1.

A. Computational Complexity Analysis

One favorable feature of Algorithm 1 is its low computational
complexity per iteration. In this section, we present the details
of exploiting Hankel and low-rank structures to achieve that. The
primary operations contributing to the computational complexity
include the following.

(1) Hankel operator HX: In Algorithm 1, the Hankel matrix is
consistently represented by the original matrix X. As a result, no

Algorithm 1 Efficient DOA Estimation via Nonconvex Low-rank
Hankel Matrix Completion with PDOM (NLHC-PDOM).

Require: Array measurement Y, Model order K, the maximum
number of iterations Kmax.
1: Initialize: M° € CM*M2F 7+ € (0,1/L,), k = 0.
2: while the stopping criterion is not satisfied and k& < kmax do
3:  Compute M**! using (17), for the largest value §* €
lie N} such that mx (M**1; M*) > q(M*+1).
kE+—k+1.
end while
: Record K-truncated SVD of M*: U, X, V¥ = TSVD(M*).
: Conduct Gram-Schmidt orthogonalization on U to generate
U, € CMixK,
: Compute the imaging function by (18).
9: Qutput: w(0) = {the K largest local maxima of J(&)}.

oo

additional computational effort is needed to explicitly construct the
Hankel matrix.

(2) Adjoint Hankel operator H*M: Since low-rank matrix M €
CMixMaF g stored by its truncated SVD M = USVH,| for ith
block Hankel matrix M; € CMixM: corresponding to Hax,, we
have

K
H' M, = HUSV" = S0« Vi, (19)
j=1

where Vi = VH[: 14 M, (i—1) : M2i], and * denotes convolution,
which can be computed efficiently by FFT with O(K(MF +
K)log(MF + K)) = O(KMFlog MF). For the overall H*M,
the complexity is O(K M F?log M F)

(3) Hankel matrix multiplication with a vector: Assume that
the Hankel matrix H is mapped from the original matrix X,
the fast multiplication is performed by 1-D FFT with complexity
O(MF?log MF) [29].

(4) Low-rank matrix multiplication with a vector: Since the
truncated SVD of M is known, the multiplication with a vector
is performed as Mx = UXV ¥z which requires O(KMF) +
O(K) + O(K?*F) = O(KMF + K*F).

(5) K-trancated SVD: This operation dominates the complexity per
iteration. For each iteration, the proximal operator is performed on
a linear combination of a low-rank matrix M* and a Hankel matrix
p(8%). With the knowledge of truncated SVD of M* and fast Hankel
matrix vector multiplication, the fast K-trancated SVD achieved by
the Lanczos bidiagonalization [30] has the computational complexity
of O(K*MF + K*F + KMF?log MF).

(6) Surrogate function for PDOM: Computing (16) requires matrix
multiplication and summation of each element of a matrix which has
the complexity of O(K M F?).

For the other operations, such as computing (11), gradients, and
Newton directions for PDOM, these can be efficiently executed
using the aforementioned six steps and the inversion of the diag-
onal matrix. The overall computational complexity per iteration is
O(KMF?log MF), given F > M > K.

IV. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to evaluate the
performance of the proposed NLHC-PDOM method for wideband
DOA estimation. The comparative analysis is performed with baseline
methods ANM [13] and EMaC [16], and CRB [31]. We exclude
[20] from comparison because the errors reported in the original
literature are comparatively higher than those of our method. For
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Fig. 2: RMSE in degress vs. SNR for M = 10, and K = 3 across three different frequency settings. The DOAs are randomly selected and vary for each

trial.

the noisy cases, we follow the strategy in [32] to suppress noise for
ANM model. The equivalent SDP is solved by well-established CVX
toolbox. All experiments are executed using Julia on a Windows 11
laptop with an Intel i7-11800H CPU and 32 GB of RAM.

For each experiment and realization, K DOAs are randomly
generated from a uniform distribution with range [10°,170°], with
a minimum separation %, unless a specific angle set is chosen. The
frequency amplitude vectors sy are randomly generated with standard
complex normal distribution CA'(0, 1) and then normalized to have
unit norm. The uniform frequency set is considered where A f = fo
and the array spacing of ULA is d = ﬁ The additive noise IN
is drawn from a a complex Gaussian distribution CA/(0, o®) and the
signal-to-noise ratio (SNR) is computed as SNR = 201log;, Hﬁ”’;
Estimation accuracy is measured the root mean square error (RMSE)
between the true DOAs, 0%, and the recovered DOAs, ék, that is

N\ 2
RMSE =, /E {% Zszl (Bk - Gk) } To ensure that the resolu-

tion of the MUSIC algorithm does not introduce any bias in the
estimation accuracy, we set 6126 %4990 The tested algorithms are
terminated if || M* — M*~ ||, <107* or k > 10*. a = 1.

6= {50°,100°,120°}, F =5 6= {85.8°,89.9°,94.0°}, F =5

. ) | 9 (i)
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Fig. 1: Histogram of the estimated DOAs by NLHC-PDOM (the blue vertical
lines) for 10 trials. True DOAs are indicated by x. M = 5. For each trial,
the initial point M (randomly selected) and the frequency amplitude s, are
different.

We first evaluate the proposed method across four scenarios, vary-
ing the separation conditions of DOAs, the number of frequencies,
and the SNR. Results are detailed in Fig. 1. The NLHC-PDOM
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Fig. 3: Average runtime (s) vs. F' for M = 5, K = 2, 5 trials, and noise-free.

algorithm consistently avoids misidentifying DOAs with obvious
errors. Sub-figures (ii) and (iii) illustrate the benefits of incorporating
additional frequencies, as the estimated DOAs are more tightly
concentrated around the true values.

Fig. 2 presents the performance of each algorithm at different
SNR levels, along with the CRB. Each point in the figure represents
the average results from 50 independent trials. While increasing the
number of trials is desirable, it is important to note that ANM and
EMaC become significantly slower as the number of frequencies
increases. The NLHC-PDOM method outperforms other gridless
techniques in terms of a smaller gap to the CRB in three cases.

To highlight the computational efficiency, we compare the oper-
ation time of each algorithm for different values of F'. The results,
shown in Fig. 3, are truncated when the time exceeds 1000 seconds.
The proposed method reduces the running time for several orders of
magnitude. Detailed results on the fast convergence rate in terms of
iterations will be provided in the extended journal version, though
Fig. 3 already reflects the fast convergence in overall runtime.

V. CONCLUSION

This paper develops a computationally efficient gridless DOA
estimation method for many frequencies. The problem is formulated
as a nonconvex low-rank Hankel matrix completion and solved
by a second-order proximal algorithm to achieve fast convergence.
With the help of low-rank and Hankel structures, the computational
complexity is significantly reduced by accelerated truncated SVD and
fast matrix vector multiplication. Numerical results demonstrate both
the high computational efficiency and the improved accuracy of our
method, as evidenced by much less operation time and a smaller gap
to the CRB.
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